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Abstract

Summary: We present pyNBS: a modularized Python 2.7 implementation of the network-based

stratification (NBS) algorithm for stratifying tumor somatic mutation profiles into molecularly and

clinically relevant subtypes. In addition to release of the software, we benchmark its key param-

eters and provide a compact cancer reference network that increases the significance of tumor

stratification using the NBS algorithm. The structure of the code exposes key steps of the algorithm

to foster further collaborative development.

Availability and implementation: The package, along with examples and data, can be downloaded

and installed from the URL https://github.com/idekerlab/pyNBS.

Contact: jkh013@ucsd.edu

1 Introduction

The biomedical community increasingly relies on genomic informa-

tion to diagnose and treat many different complex diseases, includ-

ing cancer (Frampton, 2013; Johnson, 2014). In parallel,

developments in molecular interaction mapping technologies and

network analysis algorithms have enabled the systematic elucidation

of pathways involved in cancer and other complex diseases

(Schaefer et al., 2009). These two technologies—genomics and net-

work analysis—have been recently combined to contextualize som-

atic mutations in tumors against the knowledge contained in

molecular interaction networks and disease pathway maps. For ex-

ample, numerous algorithms now use molecular network informa-

tion to discover significantly mutated pathways in particular cohorts

of patients (Ciriello, 2012; Drake, 2016; Leiserson, 2013, 2014;

Paull, 2013; Vandin, 2011a,b; Vaske, 2010).

Recently, we introduced an algorithm that uses molecular network

information to guide the stratification of tumor somatic mutation pro-

files into clinically relevant subtypes (Hofree, 2013). Such mutation

profiles have been notoriously difficult to stratify (i.e. cluster) due to

their extreme heterogeneity from patient to patient. Our algorithm,

called Network-Based Stratification (NBS), relies upon aggregating

these mutations in molecular network neighborhoods to gain power

in separating patients. The underlying assumption is that cancer arises

due to disruptions in specific molecular pathways, not only disrup-

tions in isolated genes (Vanunu et al., 2010). It is commonly observed

that similar cancer types arise from mutations that affect different

genes that are participants in common pathways. However, trad-

itional gene-wise clustering methods fail to capture similarities that

are observed only on the pathway level, since mutations do not neces-

sarily fall on the same genes and therefore do not contribute to any

measure of similarity between patients despite affecting the same

pathway. The information of each somatic mutation is smoothed

across its network neighborhood, spreading the signal to other func-

tionally related genes in network space. It is then possible to obtain

robust clusters of patients based on the similarity of these network-

smoothed mutation profiles.

In the original publication of NBS, the code used to develop the

project was provided in MATLAB, a proprietary programming lan-

guage, making open access to this software difficult. Additionally,

the code lacked modularization, making individual steps of the algo-

rithm difficult to control, analyze and test. In what follows, we im-

plement and organize the NBS algorithm as an installable Python

package, which we call pyNBS. This package modularizes and ex-

poses the major steps in the algorithm to better control, analyze and

improve the approach in future studies.
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2 Materials and methods

The NBS algorithm requires two inputs: a matrix of binary values

describing all somatic tumor mutations found within a cohort of can-

cer patients (patients � genes) and a second file describing the gene-

gene interactions defining a reference molecular network. Given these

inputs, the NBS algorithm clusters the tumor mutation profiles into

molecular subtypes as seen in Figure 1. Additional details of the algo-

rithm are described in the original NBS manuscript (Hofree, 2013).

3 Results

3.1 pyNBS usage and validation
The NBS algorithm can be executed using the pyNBS package in

two modes: using a wrapper script via the command line, or by run-

ning the provided Jupyter Notebooks. Documentation for both code

execution modes are provided within a GitHub repository, which

can be found at: https://github.com/idekerlab/pyNBS.

It should be noted that each full run of pyNBS does not necessar-

ily produce the exact same cluster assignments on the same cohort.

This variation is due to the stochastic nature of the sub-sampling

step as well as the non-unique nature of matrix factorization (Cai

et al., 2011). However, this variance is largely controlled by the final

consensus clustering step.

We tested the pyNBS package by generating patient subtypes in

ovarian and uterine cancer using the data and corresponding net-

works released with the original Hofree et al. manuscript. PyNBS

nearly perfectly recovered the original Hofree patient cluster assign-

ments for ovarian and uterine cancer (v2 P-value: 2.3�10�107 and

5.3�10�88, respectively). These two test examples are provided,

along with the required datasets (re-formatted for usage with

pyNBS), as Jupyter Notebooks in the GitHub repository.

3.2 A cancer-specific network for pyNBS
In addition to reconstructing the original NBS algorithm, we also

explored alternative reference networks for their ability to separate

tumor cohorts into clinically relevant subtypes. The outcome of this

exploratory research was a compact cancer reference network that

contained only high-confidence interactions specific to cancer. To

construct this network, we began with a high-quality network

assembled in a previous study, containing 19 781 genes and

2 724 724 interactions supported by multiple lines of evidence

(PCNet, Huang et al., 2018). We filtered this network to retain only

cancer genes as documented in at least one of four collections

(Forbes, 2017; Hanahan and Weinberg, 2011; Iorio, 2016;

Vogelstein, 2013). We found that this cancer reference network

(CRN) more effectively clusters tumor samples from several differ-

ent cancer types, as measured by the clusters’ ability to predict pa-

tient survival, in comparison to one of the networks used in the

original NBS study (Fig. 2A). This cancer reference network, as well

as directions on constructing this network and analysis of the effect

of different network models on pyNBS, are presented as Jupyter

Notebooks located in the GitHub repository.

3.3 Practical benchmarking and parameter tuning
The pyNBS algorithm can be expensive in both memory and in run

time for large networks, or if many iterations of the sub-sampling

and matrix factorization are required. However, we found that

1000 iterations of sub-sampling and consensus clustering, as origin-

ally performed by Hofree et al., could be markedly decreased with

little reduction in performance, with only 100 iterations being suffi-

cient for the consensus clustering to converge. This reduction can

offer 90% run time savings with no appreciable deviation in the re-

sults (Fig. 2B). For example, to stratify the TCGA head and neck

cancer data using the filtered HumanNet (HN90, as described by

Hofree et al.), we reduced the runtime of pyNBS from approxi-

mately 21.5 h to 2.2 h.

In addition, using the filtered Cancer Subnetwork (see above),

which only has 2291 nodes compared to the 7939 nodes in HN90,

we see that pyNBS not only runs much faster, but by reducing the

consensus clustering iterations, this also reduces the overall runtime

of pyNBS in this scenario from 6.5 h to approximately 40 min

(Fig. 2B). Due to the NBS algorithm requiring many matrix multipli-

cations, we recommend running pyNBS on a machine with at least

four threads and 4GB of RAM per thread. Such operations also sug-

gest that further optimization can be had by the utilization of GPUs.

While we mainly sought to recreate the original procedure and

parameter space for running pyNBS here, we performed an
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Fig. 1. Overview and stepwise factorization of the NBS algorithm
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Fig. 2. Benchmarking and pyNBS stratification performance. (A) Significance of

survival separation between subtypes in bladder (BLCA), colon (COAD), head

and neck (HNSC) and uterine (UCEC) cancer as discovered by pyNBS. Cohorts

were stratified using the top 10% of edges in HumanNet (HN90, blue), our can-

cer reference subnetwork (CRN) from PCNet (gold, see text), without network

propagation using CRN genes (green), and with propagation over 10 degree-

preserving shuffles of CRN (red). Note that the green and red bars provide con-

trols on CRN (gold) and should not be compared to HN90 (blue). HN90 outper-

forms its analogous controls (Hofree et al., 2013). (B) Consensus clustering

convergence rate and runtime performance of pyNBS on TCGA head and neck

cancer data with HN90 (blue) and the Cancer Subnetwork (gold). By measuring

the agreement of consensus clustering results at each step and the consensus

clustering result using 10 fewer sub-sampling iterations, it is clear that the con-

sensus clustering is fairly stable at just 100 sub-sampling iterations
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additional exploration on the effect of varying several parameters

and algorithmic decisions on the final consensus clustering results in

pyNBS. We present some of these results as Jupyter Notebooks

located in the GitHub repository.
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